If $\tan \theta - \sqrt 2 \sec \theta = \sqrt 3 $, then the general value of $\theta $ is
$n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{3}$
$n\pi + {( - 1)^n}\frac{\pi }{3} - \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{3} + \frac{\pi }{4}$
$n\pi + {( - 1)^n}\frac{\pi }{4} + \frac{\pi }{3}$
If $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $, then the general value of $\theta $ is
Find the principal and general solutions of the equation $\sec x=2$
If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be
The number of points in $(-\infty, \infty)$, for which $x^2-x \sin x-\cos x=0$, is
The number of solutions of the equation $\cos \left(x+\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}-x\right)=\frac{1}{4} \cos ^{2} 2 x, x \in[-3 \pi$ $3 \pi]$ is