If $x = at + b{t^2}$, where $x$ is the distance travelled by the body in kilometres while $t$ is the time in seconds, then the units of $b$ are
$km/s$
$km - s$
$km/{s^2}$
$km - {s^2}$
The units of angular momentum are
Which one of the following is not a unit of young's modulus
The unit of the coefficient of viscosity in $S.I.$ system is
Length cannot be measured by
Some physical quantities are given in Column $I$ and some possible $SI$ units in which these quantities may be expressed are given in Column $II$. Match the physical quantities in Column $I$ with the units in Column $II$ and indicate your answer by darkening appropriate bubbles in the $4 \times 4$ matrix given in the $ORS$.
Column $I$ | Column $II$ |
$(A)$ $\mathrm{GM}_e \mathrm{M}_5$ $\mathrm{G} \rightarrow$ universal gravitational constant, $\mathrm{M}_{\mathrm{e}} \rightarrow$ mass of the earth, $\mathrm{M}_5 \rightarrow$ mass of the Sun |
$(p)$ (volt) (coulomb) (metre) |
$(B)$ $\frac{3 \mathrm{RT}}{\mathrm{M}} ; \mathrm{R} \rightarrow$ universal gas constant, $\mathrm{T} \rightarrow$ absolute temperature, $\mathrm{M} \rightarrow$ molar mass |
$(q)$ (kilogram) $(\text { metre) })^3$ (second) $)^{-2}$ |
$(C)$ $\frac{F^2}{q^2 B^2}$ ;$\quad F \rightarrow$ force, $q \rightarrow$ charge, $B \rightarrow$ magnetic field | $(r)$ $(\text { meter })^2$ (second) $)^{-2}$ |
$(D)$ $\frac{\mathrm{GM}_e}{\mathrm{R}_{\mathrm{e}}}, G \rightarrow$ universal gravitational constant, $\mathrm{M}_{\mathrm{e}} \rightarrow$ mass of the earth, $\mathrm{R}_{\mathrm{e}} \rightarrow$ radius of the earth |
$(s)$ (farad) $(\text { volt) })^2(\mathrm{~kg})^{-1}$ |