If $(0,\; \pm 4)$ and $(0,\; \pm 2)$ be the foci and vertices of a hyperbola, then its equation is
$\frac{{{x^2}}}{4} - \frac{{{y^2}}}{{12}} = 1$
$\frac{{{x^2}}}{{12}} - \frac{{{y^2}}}{4} = 1$
$\frac{{{y^2}}}{4} - \frac{{{x^2}}}{{12}} = 1$
$\frac{{{y^2}}}{{12}} - \frac{{{x^2}}}{4} = 1$
$P$ is a point on the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}$ $= 1, N $ is the foot of the perpendicular from $P$ on the transverse axis. The tangent to the hyperbola at $P$ meets the transverse axis at $ T$ . If $O$ is the centre of the hyperbola, the $OT. ON$ is equal to :
The line $2 \mathrm{x}+\mathrm{y}=1$ is tangent to the hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$. If this line passes through the point of intersection of the nearest directrix and the $\mathrm{x}$-axis, then the eccentricity of the hyperbola is
The straight line $x + y = \sqrt 2 p$ will touch the hyperbola $4{x^2} - 9{y^2} = 36$, if
Let $S$ be the focus of the hyperbola $\frac{x^2}{3}-\frac{y^2}{5}=1$, on the positive $\mathrm{x}$-axis. Let $\mathrm{C}$ be the circle with its centre at $\mathrm{A}(\sqrt{6}, \sqrt{5})$ and passing through the point $\mathrm{S}$. if $\mathrm{O}$ is the origin and $\mathrm{SAB}$ is a diameter of $\mathrm{C}$ then the square of the area of the triangle $OSB$ is equal to ....................
The locus of middle points of the chords of the circle $x^2 + y^2 = a^2$ which touch the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is