- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
easy
If $(0,\; \pm 4)$ and $(0,\; \pm 2)$ be the foci and vertices of a hyperbola, then its equation is
A
$\frac{{{x^2}}}{4} - \frac{{{y^2}}}{{12}} = 1$
B
$\frac{{{x^2}}}{{12}} - \frac{{{y^2}}}{4} = 1$
C
$\frac{{{y^2}}}{4} - \frac{{{x^2}}}{{12}} = 1$
D
$\frac{{{y^2}}}{{12}} - \frac{{{x^2}}}{4} = 1$
Solution
(c) Foci $(0, \pm 4)$$ \equiv (0, \pm \,be)$
$⇒$ $be = 4$
Vertices $(0, \pm 2) \equiv (0, \pm b)$
$\Rightarrow b = 2 $
$\Rightarrow a = 2\sqrt 3 $
Hence equation is $\frac{{ – {x^2}}}{{{{(2\sqrt 3 )}^2}}} + \frac{{{y^2}}}{{{{(2)}^2}}} = 1$ or $\frac{{{y^2}}}{4} – \frac{{{x^2}}}{{12}} = 1$.
Standard 11
Mathematics