If $f(x) = \log \frac{{1 + x}}{{1 - x}}$, then $f(x)$ is
Even function
$f({x_1})f({x_2}) = f({x_1} + {x_2})$
$\frac{{f({x_1})}}{{f({x_2})}} = f({x_1} - {x_2})$
Odd function
A real valued function $f(x)$ satisfies the function equation $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ where a is a given constant and $f(0) = 1$, $f(2a - x)$ is equal to
Range of the function
$f(x) = \sqrt {\left| {{{\sin }^{ - 1}}\left| {\sin x} \right|} \right| - {{\cos }^{ - 1}}\left| {\cos x} \right|} $ is
Suppose $\quad f : R \rightarrow(0, \infty)$ be a differentiable function such that $5 f ( x + y )= f ( x ) \cdot f ( y ), \forall x , y \in R$. If $f(3)=320$, then $\sum \limits_{n=0}^5 f(n)$ is equal to :
The range of $f(x) = [\cos x + \sin x]$ is (Where $[.]$ is $G.I.F.$)
Let $f(x)$ be a quadratic polynomial such that $f(-2)$ $+f(3)=0$. If one of the roots of $f(x)=0$ is $-1$, then the sum of the roots of $f(x)=0$ is equal to