If $p, q, r$ are simple propositions with truth values $T, F, T$, then the truth value of $(\sim p \vee q)\; \wedge \sim r \Rightarrow p$ is
true
false
True if $r$ is false
True if $q$ is true
The conditional $(p \wedge q) ==> p$ is
For the statements $p$ and $q$, consider the following compound statements :
$(a)$ $(\sim q \wedge( p \rightarrow q )) \rightarrow \sim p$
$(b)$ $((p \vee q) \wedge \sim p) \rightarrow q$
Then which of the following statements is correct?
If statement $(p \rightarrow q) \rightarrow (q \rightarrow r)$ is false, then truth values of statements $p,q,r$ respectively, can be-
$(p\; \wedge \sim q) \wedge (\sim p \wedge q)$ is
Let $*, \square \in\{\wedge, \vee\}$ be such that the Boolean expression $(\mathrm{p} * \sim \mathrm{q}) \Rightarrow(\mathrm{p} \square \mathrm{q})$ is a tautology. Then :