$(p\; \wedge \sim q) \wedge (\sim p \wedge q)$ is
A tautology
A contradiction
Both a tautology and a contradiction
Neither a tautology nor a contradiction
The statement $( p \wedge(\sim q )) \Rightarrow( p \Rightarrow(\sim q ))$ is
The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is
If $p, q, r$ are simple propositions, then $(p \wedge q) \wedge (q \wedge r)$ is true then
The negation of the Boolean expression $((\sim q) \wedge p) \Rightarrow((\sim p) \vee q)$ is logically equivalent to
Contrapositive of the statement 'If two numbers are not equal, then their squares are not equal', is