- Home
- Standard 12
- Mathematics
If $A=$ $\left[ {\begin{array}{*{20}{c}}{5a}&{ - b}\\3&2\end{array}} \right]$ and $A\;adj\;A = A\;{A^T},$ then $5a+b $ to :
$4$
$13$
$-1$
$5$
Solution
$A=\left[\begin{array}{cc}{5 a} & {-b} \\ {3} & {2}\end{array}\right]$ and $A^{T}=\left[\begin{array}{cc}{5 a} & {3} \\ {-b} & {2}\end{array}\right]$
$\mathrm{AA}^{\mathrm{T}}=\left[\begin{array}{cc}{25 \mathrm{a}^{2}+\mathrm{b}^{2}} & {15 \mathrm{a}-2 \mathrm{b}} \\ {15 \mathrm{a}-2 \mathrm{b}} & {13}\end{array}\right]$
Now, $A \,adj$ $\mathrm{A}=|\mathrm{A}| \mathrm{I}_{2}=\left[\begin{array}{cc}{10 \mathrm{a}+3 \mathrm{b}} & {0} \\ {0} & {10 \mathrm{a}+3 \mathrm{b}}\end{array}\right]$
Given $\mathrm{AA}^{\mathrm{T}}=\mathrm{A}$. adj $\mathrm{A}$
$15 a-2 b=0$ ……..$(1)$
$10 a+3 b=13$ ………..$(2)$
Solving we get
$5 a=2$ and $b=3$
$\therefore 5 a+b=5$