Gujarati
6.Permutation and Combination
normal

If ${a_n} = \sum\limits_{r = 0}^n {} \frac{1}{{^n{C_r}}}$ then $\sum\limits_{r = 0}^n {} \frac{r}{{^n{C_r}}}$ equals

A

$(n - 1)\;{a_n}$

B

$n{a_n}$

C

$\frac{1}{2}n{a_n}$

D

None of these

(IIT-1998)

Solution

(c) Given ${a_n} = \sum\limits_{r = 0}^n {} \frac{1}{{^n{C_r}}}$

Let ${b_n} = \sum\limits_{r = 0}^n {} \frac{r}{{^n{C_r}}}$

Then ${b_n} = \frac{0}{{^n{C_0}}} + \frac{1}{{^n{C_1}}} + \frac{2}{{^n{C_2}}} + …….. + \frac{n}{{^n{C_n}}}$

and ${b_n} = \frac{n}{{^n{C_0}}} + \frac{{n – 1}}{{^n{C_1}}} + \frac{{n – 2}}{{^n{C_2}}} + …. + \frac{0}{{^n{C_n}}}$

By adding $2{b_n} = \frac{n}{{^n{C_0}}} + \frac{n}{{^n{C_1}}} + …… + \frac{n}{{^n{C_n}}}$
$ = n\,\,\left[ {\frac{1}{{^n{C_0}}} + \frac{1}{{^n{C_1}}} + \frac{1}{{^n{C_2}}} + …… + \frac{1}{{^n{C_n}}}} \right] \Rightarrow 2{b_n} = n{a_n}$

$\therefore $${b_n} = \frac{1}{2}n{a_n}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.