If $\frac{{{T_2}}}{{{T_3}}}$ in the expansion of ${(a + b)^n}$ and $\frac{{{T_3}}}{{{T_4}}}$ in the expansion of ${(a + b)^{n + 3}}$ are equal, then $n=$

  • A

    $3$

  • B

    $4$

  • C

    $5$

  • D

    $6$

Similar Questions

The number of integral terms in the expansion of $(7^{1/3} + 11^{1/9})^{6561}$ is :-

The coefficient of $\frac{1}{x}$ in the expansion of  ${\left( {1 + x} \right)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ is :-

The coefficient of $x^{37}$ in the expansion of $(1-x)^{30} \, (1 + x + x^2)^{29}$ is :

The term independent of $x$ in ${\left[ {\sqrt{\frac{ x }{3}} + \frac{{\sqrt 3 }}{{{x^2}}}} \right]^{10}}$ is

The total number or irrational terms in the binomial expansion of $\left( {{7^{1/5}} - {3^{1/10}}} \right)^{60}$ is 

  • [JEE MAIN 2019]