If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are

  • A

    $\theta = n\pi \pm \frac{\pi }{3},\,\phi = n\pi \pm \frac{\pi }{6}$

  • B

    $\theta = n\pi - \frac{\pi }{3},\,\phi = n\pi - \frac{\pi }{6}$

  • C

    $\theta = n\pi \pm \frac{\pi }{2},\,\phi = n\pi + \frac{\pi }{3}$

  • D

    None of these

Similar Questions

If the equation $tan^4x -2sec^2x + [a]^2 = 0$ has atleast one solution, then the complete range of $'a'$ (where $a \in R$ ) is 
(Note : $[k]$ denotes greatest integer less than or equal to $k$ )

The most general value of $\theta $ which will satisfy both the equations $\sin \theta = - \frac{1}{2}$ and $\tan \theta = \frac{1}{{\sqrt 3 }}$ is

If $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, then $x = $ (where $k \in Z$)

Let $\theta \in [0, 4\pi ]$ satisfy the equation $(sin\, \theta + 2) (sin\, \theta + 3) (sin\, \theta + 4) = 6$ . If the sum of all the values of $\theta $ is of the form $k\pi $, then the value of $k$ is

The general solution of $a\cos x + b\sin x = c,$ where $a,\,\,b,\,\,c$ are constants