If $1,\omega ,{\omega ^2}$ are the cube roots of unity, then $\Delta = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\\{{\omega ^{2n}}}&1&{{\omega ^n}}\end{array}\,} \right|$ is equal to

  • [AIEEE 2003]
  • A

    $0$

  • B

    $1$

  • C

    $\omega $

  • D

    ${\omega ^2}$

Similar Questions

જો $A = \left[ {\begin{array}{*{20}{c}}
1&1\\
1&1
\end{array}} \right]$ અને  $\det ({A^n} - I) = 1 - {\lambda ^n}\,,\,n \in N$ તો $\lambda $ મેળવો.

$\Delta = \left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + b + c}\\{3a}&{4a + 3b}&{5a + 4b + 3c}\\{6a}&{9a + 6b}&{11a + 9b + 6c}\end{array}\,} \right|$ કે જ્યાં $a = i,b = \omega ,c = {\omega ^2}$, તો $\Delta $ મેળવો.

જો $A = \left[ {\begin{array}{*{20}{c}}
1&{\sin \,\theta }&1\\
{ - \,\sin \,\theta }&1&{\sin \,\theta }\\
{ - 1}&{ - \,\sin \,\theta }&1
\end{array}} \right];$ તો દરેક $\theta \, \in \,\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right)$ માટે  $det (A)$ ની કિમંત મેળવો.

  • [JEE MAIN 2019]

ધારો કે $\lambda, \mu \in {R}$. જો સમીકરણ સંહતિ

$ 3 x+5 y+\lambda z=3 $

$ 7 x+11 y-9 z=2$

$97 x+155 y-189 z=\mu$ ને અસંખ્ય ઉકેલો હોય, તો $\mu+2 \lambda=$..........

  • [JEE MAIN 2024]

જો $(\mathrm{k}, 0),(4,0),(0,2)$ શિરોબિંદુવાળા ત્રિકોણનું ક્ષેત્રફળ $4$ ચોરસ એકમ હોય, તો $\mathrm{k}$ નું મૂલ્ય શોધો.