$k $ ની કેટલી કિંમતો માટે સમીકરણ સંહતી $\left( {k + 1} \right)x + 8y = 4k\;,\;kx + \left( {k + 3} \right)y $$= 3k - 1$ ને એક પણ ઉકેલ નથી.
અંનત
$1$
$2$
$3$
જો $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
{\sin \left( {x + \alpha } \right)}&{\sin \left( {x + \beta } \right)}&{\sin \left( {x + \gamma } \right)} \\
{\cos \left( {x + \alpha } \right)}&{\cos \left( {x + \beta } \right)}&{\cos \left( {x + \gamma } \right)} \\
{\sin \left( {\alpha + \beta } \right)}&{\sin \left( {\beta + \gamma } \right)}&{\sin \left( {\gamma + \alpha } \right)}
\end{array}} \right|$ અને $f(10) = 10$ તો $f(\pi)$ મેળવો.
$\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|=0$ હોય તો $a,b,c$ એ . . . શ્રેણીમાં છે.
જો ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r - 2} \\
{\frac{n}{2}}&{n - 1}&a \\
{\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)}
\end{array}} \right|$ તો $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $ ની કિમત . . .
$a$ ની . . . કિમત માટે સમીકરણની સંહતિ ${a^3}x + {(a + 1)^3}y + {(a + 2)^3}z = 0,$ $ax + (a + 1)y + (a + 2)z = 0,$ $x + y + z = 0,$ નો ઉકેલ ખાલીગણ મળે.
$l,m,n$ એ ધન સમગુણોતર શ્રેણીના ${p^{th}},{q^{th}}$ અને ${r^{th}}$ ના પદો હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log l}&{p\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log m}&{q\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log n}&{r\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\end{array}\,} \right|$ = . . . .