If ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right|$ and ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right|$ are the given determinants, then
${\Delta _1} = 3{({\Delta _2})^2}$
$\frac{d}{{dx}}({\Delta _1}) = 3{\Delta _2}$
$\frac{d}{{dx}}({\Delta _1}) = 2{({\Delta _2})^2}$
${\Delta _1} = 3\Delta _2^{3/2}$
The number of solutions of the equations $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ is
If $a\, -\, 2b + c = 1$ , then value of $\left| {\begin{array}{*{20}{c}}
{x + 1}&{x + 2}&{x + a} \\
{x + 2}&{x + 3}&{x + b} \\
{x + 3}&{x + 4}&{x + c}
\end{array}} \right|$ is
The existance of the unique solution of the system of equations$2x + y + z = \beta $ , $10x - y + \alpha z = 10$ and $4x+ 3y-z =6$ depends on
$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $
The values of $\mathrm{m}, \mathrm{n}$, for which the system of equations
$ x+y+z=4 $
$ 2 x+5 y+5 z=17 $
$ x+2 y+m z=n$
has infinitely many solutions, satisfy the equation :