Gujarati
3 and 4 .Determinants and Matrices
hard

यदि ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right|$ और ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right|$ हो, तब

A

${\Delta _1} = 3{({\Delta _2})^2}$

B

$\frac{d}{{dx}}({\Delta _1}) = 3{\Delta _2}$

C

$\frac{d}{{dx}}({\Delta _1}) = 2{({\Delta _2})^2}$

D

${\Delta _1} = 3\Delta _2^{3/2}$

Solution

(b) ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right| = {x^3} – 3abx$ ==> $\frac{d}{{dx}}{\Delta _1} = 3\,({x^2} – ab)$

तथा ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right| = {x^2} – ab$ ==> $\frac{d}{{dx}}\,({\Delta _1}) = 3\,({x^2} – ab) = 3{\Delta _2}$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.