If $ PN$ is the perpendicular from a point on a rectangular hyperbola $x^2 - y^2 = a^2 $ on any of its asymptotes, then the locus of the mid point of $PN$ is :
a circle
a parabola
an ellipse
a hyperbola
If $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$ are the eccentricities of the ellipse, $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ and the hyperbola, $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ respectively and $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ is a point on the ellipse, $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ then $\mathrm{k}$ is equal to
If line $ax$ + $by$ = $1$ is normal to the hyperbola $\frac{{{x^2}}}{{{p^2}}} - \frac{{{y^2}}}{{{q^2}}} = 1$ then $\frac{{{p^2}}}{{{a^2}}} - \frac{{{q^2}}}{{{b^2}}} = 1$ is equal to (where $a$,$b$,$p$, $q \in {R^ + })$-
The length of the latus rectum of the hyperbola $25x^2 -16y^2 = 400$ is -
The equation to the hyperbola having its eccentricity $2$ and the distance between its foci is $8$
Let $H : \frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$, where $a > b >0$, be $a$ hyperbola in the $xy$-plane whose conjugate axis $LM$ subtends an angle of $60^{\circ}$ at one of its vertices $N$. Let the area of the triangle $LMN$ be $4 \sqrt{3}$..
List $I$ | List $II$ |
$P$ The length of the conjugate axis of $H$ is | $1$ $8$ |
$Q$ The eccentricity of $H$ is | $2$ ${\frac{4}{\sqrt{3}}}$ |
$R$ The distance between the foci of $H$ is | $3$ ${\frac{2}{\sqrt{3}}}$ |
$S$ The length of the latus rectum of $H$ is | $4$ $4$ |
The correct option is: