The radius of the director circle of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, is
$a - b$
$\sqrt {a - b} $
$\sqrt {{a^2} - {b^2}} $
$\sqrt {{a^2} + {b^2}} $
The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $\mathrm{x}= \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y-\sqrt{3} \mathrm{x}+\sqrt{3}=0$ touch this hyperbola at $\left(\mathrm{x}_0, \mathrm{y}_0\right)$. If $\mathrm{m}$ is the product of the focal distances of the point $\left(\mathrm{x}_0, \mathrm{y}_0\right)$, then $4 \mathrm{e}^2+\mathrm{m}$ is equal to ...........
For hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ which of the following remains constant with change in $'\alpha '$
The length of transverse axis of the parabola $3{x^2} - 4{y^2} = 32$ is
For hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ which of the following remain constant if $\alpha$ varies
The reciprocal of the eccentricity of rectangular hyperbola, is