- Home
- Standard 12
- Mathematics
If $A$, $B$ and $C$ are the angles of a triangle then the value of the determinant
$\left| {\begin{array}{*{20}{c}}
{ - 1 + \cos B}&{\cos C + \cos B}&{\cos B} \\
{\cos C + \cos A}&{ - 1 + \cos A}&{\cos A} \\
{ - 1 + \cos B}&{ - 1 + \cos A}&{ - 1}
\end{array}} \right|$
$1$
$2$
$-1$
$0$
Solution
Given $\left|\begin{array}{ccc}-1+\cos B & \cos C+\cos B & \cos B \\ \cos C+\cos A & -1+\cos A & \cos A \\ -1+\cos B & -1+\cos A & -1\end{array}\right|$
$=\left|\begin{array}{ccc}-1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1\end{array}\right|\left(\begin{array}{cc}C_{1} \rightarrow C_{1}-C_{3} \\ C_{2} \rightarrow C_{2}-C_{3}\end{array}\right)$
$=\frac{1}{a}\left|\begin{array}{ccc}-a & \cos C & \cos B \\ a \cos C & -1 & \cos A \\ a \cos B & \cos A & -1\end{array}\right|$
$=\frac{1}{a}\left|\begin{array}{ccc}0 & \cos C & \cos B \\ 0 & -1 & \cos A \\ 0 & \cos A & -1\end{array}\right|$
$=0$