Show that $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have $\left|\begin{array}{ccc}a & b & c \\ a+2 x & b+2 y & c+2 z \\ x & y & z\end{array}\right|=\left|\begin{array}{ccc}a & b & c \\ a & b & c \\ x & y & z\end{array}\right|+\left|\begin{array}{ccc}a & b & c \\ 2 x & 2 y & 2 z \\ x & y & z\end{array}\right|$

$=0+0=0 \quad$ 

Similar Questions

Suppose $a_1, a_2, .......$ real numbers, with $a_1 \ne 0$. If $a_1, a_2, a_3, ..........$ are in $A.P$. then

If ${a^2} + {b^2} + {c^2} = - 2$ and $f(x) = \left| {\begin{array}{*{20}{c}}{1 + {a^2}x}&{(1 + {b^2})x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{1 + {b^2}x}&{(1 + {c^2})x}\\{(1 + {a^2})x}&{(1 + {b^2})x}&{1 + {c^2}x}\end{array}} \right|$ then $f(x)$ is a polynomial of degree

  • [AIEEE 2005]

Evaluate $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \operatorname{csin} \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}{31}&{37}&{92}\\{31}&{58}&{71}\\{31}&{105}&{24}\end{array}\,} \right|$ is

Show that

$\Delta=\left|\begin{array}{ccc}
(y+z)^{2} & x y & z x \\
x y & (x+z)^{2} & y z \\
x z & y z & (x+y)^{2}
\end{array}\right|=2 x y z(x+y+z)^{3}$