If $a$, $b$, $c$, $d$, $e$, $f$ are in $G.P$., then the value of $\left| {\begin{array}{*{20}{c}}
{{a^2}}&{{d^2}}&x \\
{{b^2}}&{{e^2}}&y \\
{{c^2}}&{{f^2}}&z
\end{array}} \right|$ depends on
$x, y$
$x, z$
$y, z$
None
Find the area of the triangle whose vertices are $(3,8),(-4,2)$ and $(5,1)$
Solution of the equation $\left| {\,\begin{array}{*{20}{c}}1&1&x\\{p + 1}&{p + 1}&{p + x}\\3&{x + 1}&{x + 2}\end{array}\,} \right| = 0$ are
The value of $\lambda $ for which the system of equations $2x - y - z = 12,$ $x - 2y + z = - 4,$ $x + y + \lambda z = 4$ has no solution is
Find values of $x$, if $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
For all values of $A,B,C$ and $P,Q,R$, the value of $\left| {\,\begin{array}{*{20}{c}}{\cos (A - P)}&{\cos (A - Q)}&{\cos (A - R)}\\{\cos (B - P)}&{\cos (B - Q)}&{\cos (B - R)}\\{\cos (C - P)}&{\cos (C - Q)}&{\cos (C - R)}\end{array}\,} \right|$ is