3 and 4 .Determinants and Matrices
normal

If $a$, $b$, $c$, $d$, $e$, $f$ are in $G.P$., then the value of $\left| {\begin{array}{*{20}{c}}
  {{a^2}}&{{d^2}}&x \\ 
  {{b^2}}&{{e^2}}&y \\ 
  {{c^2}}&{{f^2}}&z 
\end{array}} \right|$ depends on

A

$x, y$

B

$x, z$

C

$y, z$

D

None

Solution

$\mathrm{b}=\mathrm{ar}, \mathrm{c}=\mathrm{ar}^{2}, \mathrm{d}=\mathrm{ar}^{3}, \mathrm{e}=\mathrm{ar}^{4}, \mathrm{f}=\mathrm{ar}^{6}$

$\therefore\left|\begin{array}{ccc}{a^{2}} & {a^{2} r^{6}} & {x} \\ {a^{2} r^{2}} & {a^{2} r^{3}} & {y} \\ {a^{2} r^{6}} & {a^{2} r^{10}} & {z}\end{array}\right|$

$=a^{2} \times a^{2} r^{6}\left|\begin{array}{ccc}{1} & {1} & {x} \\ {r^{2}} & {r^{2}} & {y} \\ {r^{4}} & {r^{4}} & {z}\end{array}\right|=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.