- Home
- Standard 11
- Physics
If $Q= \frac{X^n}{Y^m}$ and $\Delta X$ is absolute error in the measurement of $X,$ $\Delta Y$ is absolute error in the measurement of $Y,$ then absolute error $\Delta Q$ in $Q$ is
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} + m\frac{{\Delta Y}}{Y}} \right)$
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} + m\frac{{\Delta Y}}{Y}} \right)Q$
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} - m\frac{{\Delta Y}}{Y}} \right)Q$
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} - m\frac{{\Delta Y}}{Y}} \right)$
Solution
$\because \frac{\Delta \mathrm{Q}}{\mathrm{Q}}=\pm\left(\mathrm{n} \frac{\Delta \mathrm{x}}{\mathrm{x}}+\mathrm{m} \frac{\Delta \mathrm{y}}{\mathrm{y}}\right)$
$\Delta \mathrm{r} \Delta \mathrm{Q}=\pm\left(\mathrm{n} \frac{\Delta \mathrm{x}}{\mathrm{x}}+\mathrm{m} \frac{\Delta \mathrm{y}}{\mathrm{y}}\right) \mathrm{Q}$