If $Q= \frac{X^n}{Y^m}$ and $\Delta X$ is absolute error in the measurement of $X,$ $\Delta Y$ is absolute error in the measurement of $Y,$ then absolute error $\Delta Q$ in $Q$ is
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} + m\frac{{\Delta Y}}{Y}} \right)$
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} + m\frac{{\Delta Y}}{Y}} \right)Q$
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} - m\frac{{\Delta Y}}{Y}} \right)Q$
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} - m\frac{{\Delta Y}}{Y}} \right)$
A physical quantity $A$ is dependent on other four physical quantities $p, q, r$ and $s$ as given below $A=\frac{\sqrt{pq}}{r^2s^3} .$ The percentage error of measurement in $p, q, r$ and $s$ $1\%,$ $3\%,\,\, 0.5\%$ and $0.33\%$ respectively, then the maximum percentage error in $A$ is .......... $\%$
The radius of a sphere is measured to be $(7.50 \pm 0.85) \,cm .$ Suppose the percentage error in its volume is $x$. The value of $x$, to the nearest integer is .....$\%$
The percentage errors in quantities $P, Q, R$ and $S$ are $0.5\%,\,1\%,\,3\%$ and $1 .5\%$ respectively in the measurement of a physical quantity $A\, = \,\frac{{{P^3}{Q^2}}}{{\sqrt {R}\,S }}$ . the maximum percentage error in the value of $A$ will be ........... $\%$
The initial and final temperatures of water as recorded by an observer are $(40.6 \pm 0.2)^{\circ} C$ and $(78.9 \pm 0.3)^{\circ} C .$ Calculate the rise in temperature with proper error limits.
The density of a cube is measured by measuring its mass and the length of its sides. If the maximum error in the measurement of mass and length are $3\%$ and $2\%$ respectively, then find the maximum error in the measurement of the density of cube.......... $\%$