જો $Q= \frac{X^n}{Y^m}$ અને $\Delta X$ એ $X$ ની નિરપેક્ષ ત્રુટિ અને $\Delta Y$ એ $Y$ ની નિરપેક્ષ ત્રુટિ હોય તો $Q$ ની નિરપેક્ષ ત્રુટિ $\Delta Q$ કેટલી થાય?
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} + m\frac{{\Delta Y}}{Y}} \right)$
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} + m\frac{{\Delta Y}}{Y}} \right)Q$
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} - m\frac{{\Delta Y}}{Y}} \right)Q$
$\Delta Q = \pm \left( {n\frac{{\Delta X}}{X} - m\frac{{\Delta Y}}{Y}} \right)$
એક ભૌતિકરાશિ નો માપન યોગ્ય ચાર રાશિઓ $a, b, c$ અને $d$ સાથેનો સંબંધ આ મુજબ છે. $P=\frac{a^{2} b^{2}}{(\sqrt{c} d)}$, $a, b, c$ અને $D$ માં પ્રતિશત ત્રુટિ અનુક્રમે $1 \%, 3 \%, 4 \%$ અને $2 \%$ છે, તો $P$ માં પ્રતિશત ત્રુટિ શોધો. જો ઉપર્યુક્ત સંબંધનો ઉપયોગ કરીને ગણતરી કરતાં $P$ નું મૂલ્ય $3.763$ મળતું હોય, તો તમે આ પરિણામને કયા મૂલ્ય સુધી $Round \,off$ કરશો ?
એક ભૌતિક રાશિ $z$ બીજા ચાર આવકલોકન $a,b,c$ અને $d$ પર $z =\frac{ a ^{2} b ^{\frac{2}{3}}}{\sqrt{ c } d ^{3}}$ મુજબ આધાર રાખે છે. $a, b, c$ અને $d$ ના માપનમા પ્રતિશત ત્રુટિ અનુક્રમે $2 \%, 1.5 \%, 4 \%$ અને $2.5 \%$ છે. $z$ ના માપનમા પ્રતિશત ત્રુટિ કેટલા $\%$ હશે?
ધનના બાજુના માપનમાં સાપેક્ષ ત્રૂટી $0.027$ છે. તેના કદના માપનમાં સંબંધિત ત્રુટી કેટલી થાય?
ત્રુટિઓના સંયોજન વિશે ટૂંકનોંધ લખો.
સાદા લોલકના પ્રયોગમાં લોલકનો આવર્તકાળ $T=2 \pi \sqrt{\frac{l}{g}}$ પરથી માપવામાં આવે છે. જો આવર્તકાળ અને લંબાઈના માપનમાં મહત્તમ પ્રતિશત ત્રુટિ અનુક્રમે $2 \% $ અને $ 2 \% $ હોય, તો $g$ ના માપનમાં મળતી મહત્તમ પ્રતિશત ત્રુટિ ......... $\%$ હોય.