- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
If $(a -2)x^2 + ay^2 = 4$ represents rectangular hyperbola, then $a$ equals :-
A
$0$
B
$2$
C
$1$
D
$3$
Solution
We know that for Rectangular Hyperbola, $b^{\prime}=a^{\prime}$ (the general form)
$\Rightarrow$ On simplifying Equation
1, $\frac{x^{2}}{\frac{4}{a-2}}-\frac{y^{2}}{\left(\frac{-4}{a}\right)}=1$
where we see, $a^{2}=\frac{4}{a-2}$ and $b^{2}=\frac{-4}{a}$
If $b^{\prime}=a^{\prime} \Rightarrow b^{\prime 2}=a^{\prime 2}$
$\Rightarrow \frac{-4}{a}=\frac{4}{a-2}$
$\Rightarrow-(a-2)=a$
$\Rightarrow 2=2 a$
$\Rightarrow a=1$
Standard 11
Mathematics