The line $lx + my + n = 0$ will be a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, if

  • A

    ${a^2}{l^2} + {b^2}{m^2} = {n^2}$

  • B

    ${a^2}{l^2} - {b^2}{m^2} = {n^2}$

  • C

    $a{m^2} - {b^2}{n^2} = {a^2}{l^2}$

  • D

    None of these

Similar Questions

The eccentricity of the hyperbola $2{x^2} - {y^2} = 6$ is

The locus of the point of instruction of the lines $\sqrt 3 x - y - 4 \sqrt 3 t = 0$  $\&$  $\sqrt 3tx + ty - 4\sqrt 3 = 0$  (where $ t$  is a parameter) is a hyperbola whose eccentricity is

If the tangent and normal to a rectangular hyperbola $xy = c^2$ at a variable point cut off intercept  $a_1, a_2$ on $x-$ axis and $b_1, b_2$ on $y-$ axis, then $(a_1a_2 + b_1b_2)$ is

Let $0 < \theta  < \frac{\pi }{2}$. If the eccentricity of the hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ is greater than $2$, then the length of its latus rectum lies in the interval

  • [JEE MAIN 2019]

The eccentricity of the hyperbola can never be equal to