1.Relation and Function
normal

If $f:\left\{ {1,2,3,4} \right\} \to \left\{ {1,2,3,4} \right\}$ and $y=f(x)$ be a function such that $\left| {f\left( \alpha  \right) - \alpha } \right| \leqslant 1$,for $\alpha  \in \left\{ {1,2,3,4} \right\}$ then total number of such functions are

A

$81$

B

$36$

C

$54$

D

none of these

Solution

Total cases $= 2\times 3 \times 3 \times 2 = 36$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.