If a charged particle enters perpendicularly in the uniform magnetic field then
Energy remains constant but momentum changes
Energy and momentum both remains constant
Momentum remains constant but energy changes
Neither energy nor momentum remains constant
A charged particle is moving in a uniform magnetic field in a circular path. Radius of circular path is $R$. When energy of particle is doubled, then new radius will be
A proton, an electron, and a Helium nucleus, have the same energy. They are in circular orbitals in a plane due to magnetic field perpendicular to the plane. Let $r_p, r_e$ and $r_{He}$ be their respective radii, then
A charge particle of charge $q$ and mass $m$ is accelerated through a potential diff. $V\, volts$. It enters a region of orthogonal magnetic field $B$. Then radius of its circular path will be
A particle of charge per unit mass $\alpha$ is released from origin with a velocity $\bar{v}=v_0 \vec{i}$ in a uniform magnetic field $\bar{B}=-B_0 \hat{k}$. If the particle passes through $(0, y, 0)$ then $y$ is equal to
An electron is moving along the positive $X$$-$axis. You want to apply a magnetic field for a short time so that the electron may reverse its direction and move parallel to the negative $X$$-$axis. This can be done by applying the magnetic field along