10-1.Circle and System of Circles
hard

If a circle $C$ passing through the point $(4, 0)$ touches the circle $x^2 + y^2 + 4x -6y = 12$ externally at the point $(1, -1)$, then the radius of $C$ is

A

$2\sqrt 5 $

B

$4$

C

$5$

D

$\sqrt {57} $

(JEE MAIN-2019)

Solution

Tangent at $\left( {1, – 1} \right)$ is $x\left( 1 \right) + y\left( { – 1} \right) + 2\left( {x + 1} \right) – 3\left( {y – 1} \right) – 12 = 0$

$ = 3x – 4y = 7$

required circle is ${\left( {x + 1} \right)^2} + {\left( {y – 1} \right)^2} + \lambda \left( {3x – 4y – 7} \right) = 0$

It pass through $\left( {4,0} \right)$

$ \Rightarrow 9 + 1 + \lambda \left( {12 – 7} \right) = 0 \Rightarrow  =  – 2$

$ \Rightarrow $ required circleb is ${x^2} + {y^2} – 8x + 10y + 16 = 0$

$ \Rightarrow $ Radius $ = \sqrt {16 + 25 – 16}  = 5$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.