3 and 4 .Determinants and Matrices
normal

If both $\left( {A - \frac{I}{2}} \right)$ and ${A + \frac{I}{2}}$ are orthogonal matrices, then  

A

$A$ is orthogonal

B

$A$ is skew symmetric matrix of even order

C

${A^2} = \frac{3}{4}I$

D

$A$ is skew symmetric matrix of odd order

Solution

$\left(A-\frac{I}{2}\right)\left(A^{T}-\frac{I}{2}\right)=I$

$A{A^T} – \frac{{{A^T}}}{2} – \frac{A}{2} = \frac{{3I}}{4}$        …….$(1)$

Similarly $A{A^T} + \frac{{{A^T}}}{2} + \frac{A}{2} = \frac{{3I}}{4}$        ……..$(2)$

$(2)-(1) \Rightarrow A+A^{T}=0$

Skew symmetric matrix

But $(1)+(2)$

$\Rightarrow \mathrm{AA}^{\mathrm{T}}=\frac{3 \mathrm{I}}{4}$

But $|A| \neq 0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.