Gujarati
Hindi
3 and 4 .Determinants and Matrices
normal

Which of the following is an orthogonal matrix

A

$\left[ {\begin{array}{*{20}{c}}{6/7}&{2/7}&{ - 3/7}\\{2/7}&{3/7}&{6/7}\\{3/7}&{ - 6/7}&{2/7}\end{array}} \right]$

B

$\left[ {\begin{array}{*{20}{c}}{6/7}&{2/7}&{3/7}\\{2/7}&{ - 3/7}&{6/7}\\{3/7}&{6/7}&{ - 2/7}\end{array}} \right]$

C

$\left[ {\begin{array}{*{20}{c}}{ - 6/7}&{ - 2/7}&{ - 3/7}\\{2/7}&{3/7}&{6/7}\\{ - 3/7}&{6/7}&{2/7}\end{array}} \right]$

D

$\left[ {\begin{array}{*{20}{c}}{6/7}&{ - 2/7}&{3/7}\\{2/7}&{2/7}&{ - 3/7}\\{ - 6/7}&{2/7}&{3/7}\end{array}} \right]$

Solution

Matrix $\left[ {\,\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\\{{c_1}}&{{c_2}}&{{c_3}}\end{array}\,} \right]$ is orthogonal if

$\sum {a_i^2} \, = \,\sum {b_i^2} \, = \,\sum {c_i^2} \, = \,1$; $\sum {a_i\,b_i} = \sum {b_i\, c_i} = \sum {c_i\,a_i} = 0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.