If equation in variable $\theta, 3 tan(\theta -\alpha) = tan(\theta + \alpha)$, (where $\alpha$ is constant) has no real solution, then $\alpha$ can be (wherever $tan(\theta - \alpha)$ & $tan(\theta + \alpha)$ both are defined)
$\frac{\pi}{15}$
$\frac{5\pi}{18}$
$\frac{5\pi}{12}$
$\frac{17\pi}{18}$
The solution of the equation $cos^2\theta\, +\, sin\theta\, + 1\, =\, 0$ lies in the interval
If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is
Find the general solution of the equation $\sin 2 x+\cos x=0$
No. of solution of equation $sin^{65}x\, -\, cos^{65}x =\, -1$ is, if $x \in (-\pi , \pi )$
Values of $\theta (0 < \theta < {360^o})$ satisfying ${\rm{cosec}}\theta + 2 = 0$ are