If equation in variable $\theta, 3 tan(\theta -\alpha) = tan(\theta + \alpha)$, (where $\alpha$ is constant) has no real solution, then $\alpha$ can be (wherever $tan(\theta - \alpha)$ & $tan(\theta + \alpha)$ both are defined)

  • A

    $\frac{\pi}{15}$

  • B

    $\frac{5\pi}{18}$

  • C

    $\frac{5\pi}{12}$

  • D

    $\frac{17\pi}{18}$

Similar Questions

All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation

  • [JEE MAIN 2019]

If $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ and $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right),$ then 

  • [JEE MAIN 2020]

Number of solutions to the system of equations $sin \frac{x+y}{2}=0$ and $|x| + |y| = 1$

The number of values of $x$ in the interval $\left(\frac{\pi}{4}, \frac{7 \pi}{4}\right)$ for which $14 \operatorname{cosec}^{2} x-2 \sin ^{2} x=21$ $-4 \cos ^{2} x$ holds, is

  • [JEE MAIN 2022]

The number of pairs $(x, y)$ satisfying the equations $\sin x + \sin y = \sin (x + y)$ and $|x| + |y| = 1$ is