If error in measuring diameter of a circle is $4\%$, the error in circumference of the circle would be

  • A

    $2$

  • B

    $8$

  • C

    $4$

  • D

    $1$

Similar Questions

Students $I$, $II$ and $III$ perform an experiment for measuring the acceleration due to gravity $(g)$ using a simple pendulum.

They use different lengths of the pendulum and /or record time for different number of oscillations. The observations are shown in the table.

Least count for length $=0.1 \mathrm{~cm}$

Least count for time $=0.1 \mathrm{~s}$

Student Length of the pendulum $(cm)$ Number of oscillations $(n)$ Total time for $(n)$ oscillations $(s)$ Time period $(s)$
$I.$ $64.0$ $8$ $128.0$ $16.0$
$II.$ $64.0$ $4$ $64.0$ $16.0$
$III.$ $20.0$ $4$ $36.0$ $9.0$

If $\mathrm{E}_{\mathrm{I}}, \mathrm{E}_{\text {II }}$ and $\mathrm{E}_{\text {III }}$ are the percentage errors in g, i.e., $\left(\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100\right)$ for students $\mathrm{I}, \mathrm{II}$ and III, respectively,

  • [IIT 2008]

We measure the period of oscillation of a simple pendulum. In successive measurements, the readings turn out to be $2.63 \;s , 2.56 \;s , 2.42\; s , 2.71 \;s$ and $2.80 \;s$. Calculate the absolute errors, relative error or percentage error.

In a experiment to measure the height of a bridge by dropping a stone into water underneath, if the error in the measurement of times is $0.1\;s$ at the end of $2\;s$, then the error in the estimation of the height of the bridge will be

Thickness of a pencil measured by using a screw gauge (least count $0.001 \,cm$ ) comes out to be $0.802 \,cm$. The percentage error in the measurement is ........... $\%$

If $x = a -b,$ then percentage error in $x$ will be