यदि $R$ में किन्हीं $\alpha$ तथा $\beta$ के लिए, निम्न तीन समतलों $x+4 y-2 z=1$, $x+7 y-5 z=\beta$, $x+5 y+\alpha z=5$ का प्रतिच्छेदन, $R ^{3}$ में एक रेखा है, तो $\alpha+\beta$ का मान है 

  • [JEE MAIN 2020]
  • A

    $10$

  • B

    $-10$

  • C

    $2$

  • D

    $0$

Similar Questions

रेखीय समीकरण निकाय $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$ अद्वितीय हल रखता है, यदि

यदि शीर्ष $(2,-6),(5,4)$ और $(k, 4)$ वाले त्रिभुज का क्षेत्रफल $35$ वर्ग इकाई हो तो $k$ का मान है:

यदि $n \ne 3k$ और 1,$\omega ,{\omega ^2}$ इकाई के घनमूल हैं, तो $\Delta  = \left| {\,\begin{array}{*{20}{c}}1&{{\omega ^n}}&{{\omega ^{2n}}}\\{{\omega ^{2n}}}&1&{{\omega ^n}}\\{{\omega ^n}}&{{\omega ^{2n}}}&1\end{array}\,} \right|$ का मान है

यदि समीकरणों के निकाय $x+y+z=2$, $2 x+4 y-z=6$, $3 x+2 y+\lambda z=\mu$ के अनन्त हल हैं, तो

  • [JEE MAIN 2020]

यदि $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$ है, तो $\lambda, \frac{\lambda}{3}$ किस समीकरण के मूल हैं ?

  • [JEE MAIN 2023]