$\alpha$ के मानों की संख्या, जिसके लिये समीकरण निकाय:
$x+y+z=\alpha$
$\alpha x+2 \alpha y+3 z=-1$
$x+3 \alpha y+5 z=4$ असंगत है, होंगी
$0$
$1$
$2$
$3$
सारणिकों का प्रयोग करके $(1,2)$ और $(3,6)$ को मिलाने वाली रेखा का समीकरण ज्ञात कीजिए।
सारणिक $\left| {\,\begin{array}{*{20}{c}}2&8&4\\{ - 5}&6&{ - 10}\\1&7&2\end{array}\,} \right|$ का मान है
यदि समीकरणों के निकाय $\begin{array}{l}\alpha x + y + z = \alpha - 1\\x + \alpha y + z = \alpha - 1\\x + y + \alpha z = \alpha - 1\end{array}$ का कोई हल नहीं है, तब $\alpha $ का मान है
यदि $A = \left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,B = \left| {\,\begin{array}{*{20}{c}}1&1&1\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,C = \left| {\,\begin{array}{*{20}{c}}a&b&c\\{{a^2}}&{{b^2}}&{{c^2}}\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right|,$ तो निम्न में से कौन सा सम्बन्ध सत्य है
यदि $x = cy + bz,\,\,y = az + cx,\,\,z = bx + ay$ (जहाँ $ x, y, z$ सभी शून्य नहीं हैं) का $x = 0$,$y = 0$,$z = 0$ के अतिरिक्त भी कोई हल है, तो $a, b $ और $ c$ में सम्बन्ध है