If half-life of a radioactive atom is $2.3\, days$, then its decay constant would be
$0.1$
$0.2$
$0.3$
$2.3$
The decay constants of a radioactive substance for $\alpha $ and $\beta $ emission are ${\lambda _\alpha }$ and ${\lambda _\beta }$ respectively. If the substance emits $\alpha $ and $\beta $ simultaneously, then the average half life of the material will be
$A$ and $B$ are two radioactive substances whose half lives are $1$ and $2$ years respectively. Initially $10\, gm$ of $A$ and $1\, gm$ of $B$ is taken. The time (approximate) after which they will have same quantity remaining is ........... $years$
Define the average life of a radioactive sample and obtain its relation to decay constant and half life.
Draw a graph showing the variation of decay rate with number of active nuclei.
A radioactive isotope $X$ with a half-life of $1.37 \times {10^9}$ years decays to $Y$ which is stable. A sample of rock from the moon was found to contain both the elements $X$ and $Y$ which were in the ratio of $1 : 7$. The age of the rock is