- Home
- Standard 12
- Mathematics
જો શ્રેણિક $A = \left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]$, તો ${A^{16}} = $
$\left[ {\begin{array}{*{20}{c}}0&{ - 1}\\1&0\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}{ - 1}&0\\0&1\end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$
Solution
(d) Given, Matrix $A = \,\left[ {\begin{array}{*{20}{c}}0&{ – 1}\\1&0\end{array}} \right]$.
We know that ${A^2} = A.A = \left[ {\begin{array}{*{20}{c}}0&{ – 1}\\1&0\end{array}} \right]\,\left[ {\begin{array}{*{20}{c}}0&{ – 1}\\1&0\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}{ – 1}&0\\0&{ – 1}\end{array}} \right].$
Therefore
${A^{16}} = {({A^2})^8} = {\left[ {\begin{array}{*{20}{c}}{ – 1}&0\\0&{ – 1}\end{array}} \right]^8} = \left[ {\begin{array}{*{20}{c}}{{{( – 1)}^8}}&0\\0&{{{( – 1)}^8}}\end{array}} \right]$$ = \left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]$.