જો શૂન્યતર વાસ્તવિક સંખ્યા $b$ અને $c$ છે કે જેથી $min \,f\left( x \right) > \max \,g\left( x \right)$, કે જ્યાં $f\left( x \right) = {x^2} + 2bx + 2{c^2}$ અને $g\left( x \right) = {-x^2} - 2cx + {b^2}$$\left( {x \in R} \right)$; તો $\left| {\frac{c}{b}} \right|$ એ . . . અંતરાલ માં છે .
$\left( {0\,,\,\frac{1}{2}} \right)$
$\left[ {\frac{1}{2}\,,\,\frac{1}{{\sqrt 2 }}} \right)$
$\left[ {\frac{1}{{\sqrt 2 }}\,,\,\sqrt 2 } \right]$
$\left( {\sqrt 2 \,,\,\infty } \right)$
જો $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, તો $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ મળે.
જો $P(S)$ એ ગણ $S$ ના બધાજ ઉપગણનો ગણ દર્શાવે છે તો ગણ $S = \{ 1, 2, 3\}$ થી ગણ $P(S)$ પરના પરના એક-એક વિધેયની સંખ્યા મેળવો.
સાબિત કરો કે $f: R \rightarrow R ,$ $f(x)=[x]$ દ્વારા વ્યાખ્યાયિત મહત્તમ પૂર્ણાક વિધેય $(Greatest\, integer \,function)$ એક-એક પણ નથી અને વ્યાપ્ત પણ નથી. અહીં, $[x]$ એ $x$ થી નાના અથવા $x$ ને સમાન તમામ પૂર્ણાકોમાં મહત્તમ પૂર્ણાક દર્શાવે છે. બીજા શબ્દોમાં $x$ થી અધિક નહિ તેવા પૂર્ણાકોમાં સૌથી મોટો પૂર્ણાક $x$ છે.
ધારો કે $f : N \rightarrow R$ એવું વિધેય છે કે જેથી પ્રાકૃતિક સંખ્યાઓ $x$ અને $y$ માટે $f(x+y)=2 f(x) f(y)$. જો $f(1)=2$, તો $\sum \limits_{k=1}^{10} f(\alpha+k)=\frac{512}{3}\left(2^{20}-1\right)$ થાય તે માટેની $\alpha$ ની કિમત ....... છે.
જો વિધેય $f : R \rightarrow R$ એ માટે $3f(2x^2 -3x + 5) + 2f(3x^2 -2x + 4) = x^2 -7x + 9\ \ \ \forall x \in R$ વ્યાખ્યાયિત હોય તો $f(5)$ ની કિમત મેળવો.