यदि शून्येतर वास्तविक संख्याएँ $b$ तथा $c$ ऐसी हैं कि $\min f(x)>\max g(x)$, जहाँ $f(x)=x^{2}+2 b x+2 c ^{2}$ तथा $g (x)=-x^{2}-2 c x+ b ^{2}(x \in R )$ हैं, तो $\left|\frac{ c }{ b }\right|$ जिस अंतराल में है, वह है

  • [JEE MAIN 2014]
  • A

    $\left( {0\,,\,\frac{1}{2}} \right)$

  • B

    $\left[ {\frac{1}{2}\,,\,\frac{1}{{\sqrt 2 }}} \right)$

  • C

    $\left[ {\frac{1}{{\sqrt 2 }}\,,\,\sqrt 2 } \right]$

  • D

    $\left( {\sqrt 2 \,,\,\infty } \right)$

Similar Questions

माना $f ( x )=\frac{ x -1}{ x +1}, x \in R -\{0,-1,1)$ है। यदि $f ^{ n +1}( x )= f \left( f ^{ n }( x )\right)$ है, तो $\forall n \in N$, है, तो $f ^6(6)+ f ^7(7)$ बराबर है

  • [JEE MAIN 2022]

सिद्ध कीजिए कि $f(x)=2 x$ द्वारा प्रदत्त फलन $f: N \rightarrow N$ एकैकी है किंतु आच्छादक नहीं है।

$x = - 3$ के लिए व्यजंक $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ का आंकिक मान है

माना $\mathrm{f}^1(\mathrm{x})=\frac{3 \mathrm{x}+2}{2 \mathrm{x}+3}, \mathrm{x} \in \mathrm{R}-\left\{\frac{-3}{2}\right\}$ है $\mathrm{n} \geq 2$ के लिए $\mathrm{f}^{\mathrm{n}}(\mathrm{x})=\mathrm{f}^1 0 \mathrm{f}^{\mathrm{n}-1}(\mathrm{x})$ द्वारा परिभाषित कीजिए। यदि $\mathrm{f}^5(\mathrm{x})=\frac{\mathrm{ax}+\mathrm{b}}{\mathrm{bx}+\mathrm{a}}, \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$, है, तो $\mathrm{a}+\mathrm{b}$ बराबर है_________. 

  • [JEE MAIN 2023]

माना $a, b, c \in R$ यदि $f(x)=a x^{2}+b x+c$ ऐसा है कि $a+b+c=3$ है तथा सभी $x, y \in R$ के लिए
$f(x+y)=f(x)+f(y)+x y$ है, तो $\sum_{n=1}^{10} f(n)$ बराबर है:

  • [JEE MAIN 2017]