यदि शून्येतर वास्तविक संख्याएँ $b$ तथा $c$ ऐसी हैं कि $\min f(x)>\max g(x)$, जहाँ $f(x)=x^{2}+2 b x+2 c ^{2}$ तथा $g (x)=-x^{2}-2 c x+ b ^{2}(x \in R )$ हैं, तो $\left|\frac{ c }{ b }\right|$ जिस अंतराल में है, वह है

  • [JEE MAIN 2014]
  • A

    $\left( {0\,,\,\frac{1}{2}} \right)$

  • B

    $\left[ {\frac{1}{2}\,,\,\frac{1}{{\sqrt 2 }}} \right)$

  • C

    $\left[ {\frac{1}{{\sqrt 2 }}\,,\,\sqrt 2 } \right]$

  • D

    $\left( {\sqrt 2 \,,\,\infty } \right)$

Similar Questions

सिद्ध किजिए कि $f(1)=f(2)=1$ तथा $x>2$ के लिए $f(x)=x-1$ द्वारा प्रदत्त फलन $f: N \rightarrow N ,$ आच्छादक तो है किंतु एकैकी नहीं है।

माना $x$ एक अशून्य परिमेय संख्या और $y$ एक अपरिमेय संख्या है। तब $xy$ है

यदि $f:R \to R$ तथा $g:R \to R$ इस प्रकार है कि $f(x) = \;|x|$ तथा $g(x) = \;|x|$ प्रत्येक $x \in R$ के लिए, तब $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $

माना $\mathrm{A}=\{1,2,3,4,5\}$ तथा $\mathrm{B}=\{1,2,3,4,5,6\}$ हैं। तो $f(1)+f(2)=f(4)-1$ को संतुष्ट करने वाले फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ की संख्या है

  • [JEE MAIN 2023]

यदि $a +\alpha=1, b +\beta=2$ तथा $af ( x )+\alpha f \left(\frac{1}{ x }\right)$ $=b x +\frac{\beta}{ x }, x \neq 0$ हैं, तो $\frac{ f ( x )+ f \left(\frac{1}{ x }\right)}{ x +\frac{1}{ x }}$ बराबर है

  • [JEE MAIN 2021]