If some charge is given to a solid metallic sphere, the field inside remains zero and by Gauss's law all the charge resides on the surface. Now, suppose that Coulomb's force between two charges varies as $1 / r^{3}$. Then, for a charged solid metallic sphere
field inside will be zero and charge density inside will be zero
field inside will not be zero and charge density inside will not be zero
field inside will not be zero and charge density inside will be zero
field inside will be zero and charge density inside will not be zero
Obtain an expression for electric field at the surface of a charged conductor.
Two metallic spheres of radii $1\,cm$ and $2\,cm$ are given charges ${10^{ - 2}}\,C$ and $5 \times {10^{ - 2}}\,C$ respectively. If they are connected by a conducting wire, the final charge on the smaller sphere is
An empty thick conducting shell of inner radius $a$ and outer radius $b$ is shown in figure.If it is observed that the inner face of the shell carries a uniform charge density $-\sigma$ and the surface carries a uniform charge density $ '\sigma '$
If another point charge $q_B$ is also placed at a distance $c ( > b) $ the center of shell, then choose the correct statements
A hollow conducting sphere of inner radius $R$ and outer radius $2R$ is given a charge $Q$ as shown in the figure, then the :
Three concentric conducting spherical shells have radius $ r, 2r$ and $3r$ and $Q_1, Q_2$ and $Q_3$ are final charges respectively. Innermost and outermost shells are already earthed as shown in figure. Choose the wrong statement.