If some charge is given to a solid metallic sphere, the field inside remains zero and by Gauss's law all the charge resides on the surface. Now, suppose that Coulomb's force between two charges varies as $1 / r^{3}$. Then, for a charged solid metallic sphere

  • [KVPY 2017]
  • A

    field inside will be zero and charge density inside will be zero

  • B

    field inside will not be zero and charge density inside will not be zero

  • C

    field inside will not be zero and charge density inside will be zero

  • D

    field inside will be zero and charge density inside will not be zero

Similar Questions

Obtain an expression for electric field at the surface of a charged conductor.

Two metallic spheres of radii $1\,cm$ and $2\,cm$ are given charges ${10^{ - 2}}\,C$ and $5 \times {10^{ - 2}}\,C$ respectively. If they are connected by a conducting wire, the final charge on the smaller sphere is

  • [AIPMT 1995]

An empty thick conducting shell of inner radius $a$ and outer radius $b$ is shown in figure.If it is observed that the inner face of the shell carries a uniform charge density $-\sigma$ and the surface carries a uniform charge density $ '\sigma '$

If another point charge $q_B$ is also placed at a distance $c ( > b) $ the center of shell, then choose the correct statements 

A hollow conducting sphere of inner radius $R$ and outer radius $2R$ is given a charge $Q$ as shown in the figure, then the :

Three concentric conducting spherical shells have radius $ r, 2r$ and $3r$ and $Q_1, Q_2$ and $Q_3$ are final charges respectively. Innermost and outermost shells are already earthed as shown in figure. Choose the wrong statement.