If some charge is given to a solid metallic sphere, the field inside remains zero and by Gauss's law all the charge resides on the surface. Now, suppose that Coulomb's force between two charges varies as $1 / r^{3}$. Then, for a charged solid metallic sphere

  • [KVPY 2017]
  • A

    field inside will be zero and charge density inside will be zero

  • B

    field inside will not be zero and charge density inside will not be zero

  • C

    field inside will not be zero and charge density inside will be zero

  • D

    field inside will be zero and charge density inside will not be zero

Similar Questions

Figure shows a charged conductor resting on an insulating stand. If at the point $P$ the charge density is $\sigma $, the potential is $V$ and the electric field strength is $E$, what are the values of these quantities at point $Q$

Charge density        potential        Electric intensity

Show that electrostatic potential is constant throughout the volume of the conductor and has the same value (as inside) on its surface.

Two metal spheres, one of radius $R$ and the other of radius $2R$, both have same surface charge density $\sigma $. They are brought in contact and separated. What will be new surface charge densities on them ?

Two metal spheres, one of radus $R$ and the other of radius $2 R$ respectively have the same surface charge density $\sigma$. They are brought in contact and separated. What will be the new surface charge densities on them?

  • [NEET 2019]

$(a)$ A conductor $A$ with a cavity as shown in Figure $(a)$ is given a charge $Q$. Show that the entire charge must appear on the outer surface of the conductor.

$(b)$ Another conductor $B$ with charge $q$ is inserted into the cavity keeping $B$ insulated from $A$. Show that the total charge on the outside surface of $A \text { is } Q+q$ [Figure $(b)$]

$(c)\;A$ sensitive instrument is to be shielded from the strong electrostatic fields in its environment. Suggest a possible way.