यदि धातु के ठोस गोले को कुछ आवेश दिया जाता है तो, धातु के अन्दर विद्युत् क्षेत्र शून्य होता है। गॉस (Gauss) के नियम के तहत, आवेश गोले के सतह पर ही स्थित रहता हैं | अब यदि यह मान लें कि दो आवेशों के बीच का कूलाम्बिक बल (Coulomb's force) $1 / r^3$ के हिसाब से बदलता है, तब आवेशित धातु के गोले के अन्दर

  • [KVPY 2017]
  • A

    विद्युत क्षेत्र शून्य होगा, और आवेश घनत्व भी शून्य होगा ।

  • B

    विद्युत क्षेत्र एवं आवेश घनत्व दोनों अशून्य होंगे ।

  • C

    विद्युत क्षेत्र अशून्य तथा आवेश घनत्व शून्य होगा ।

  • D

    विद्युत क्षेत्र शून्य तथा आवेश घनत्व अशून्य होगा ।

Similar Questions

एकसमान पृष्ठ आवेश घनत्व $\sigma $ वाले चालक पृष्ठ के निकट वैद्युत क्षेत्र

आंतरिक त्रिज्या $r_{1}$ तथा बाह्य त्रिज्या $r_{2}$ वाले एक गोलीय चालक खोल ( कोश ) पर $Q$ आवेश है।

$(a)$ खोल के केंद्र पर एक आवेश $q$ रखा जाता है। खोल के भीतरी और बाहरी पृष्ठों पर पृष्ठ आवेश घनत्व क्या है?

$(b)$ क्या किसी कोटर ( जो आवेश विहीन है ) में विध्यूत क्षेत्र शून्य होता है, चाहे खोल गोलीय न होकर किसी भी अनियमित आकार का हो? स्पष्ट कीजिए।

$(a)$ किसी चालक $A$ जिसमें चित्र $(a)$ में दर्शाए अनुसार कोई कोटर / गुहा (Cavity) है, को $Q$ आवेश दिया गया है। यह दर्शाइए कि समस्त आवेश चालक के बाह्य पुष्ठ पर प्रतीत होना चाहिए।

$(b)$ कोई अन्य चालक $B$ जिस पर आवेश $q$ है, को कोटर / गुहा (Cavity) में इस प्रकार धँसा दिया जाता है कि चालक $B$ चालक $A$ से  विध्युतरोधी रहे। यह दर्शाइए कि चालक $A$ के बाह्य पृष्ठ पर कुल आवेश $Q+q$ है [ चित्र $(b)$]।

$(c)$ किसी सुग्राही उपकरण को उसके पर्यावरण के प्रबल स्थिर वैध्यूत क्षेत्रों से परिरिक्षित किया जाना है। संभावित उपाय लिखिए।

क्या संधारित्र में परावैद्युत माध्यम के रुप में धातुओं का उपयोग कर सकते हैं

चित्र में दर्शाए अनुसार एक धनात्मक आवेश $q$ को एक अनावेशित खोखले बेलनाकार चालक कोश (neutral hollow cylindrical conducting shell) के केंद्र पर रखा गया है । निम्नांकित में से कौन-सा चित्र बेलन की सतहों पर प्रेरित आवेशों को सही निरूपित करता है। (बेलन के किलारों के प्रभाव को अनदेखा कीजिए)

  • [KVPY 2017]