If the $6^{th}$ term in the expansion of the binomial ${\left[ {\frac{1}{{{x^{\frac{8}{3}}}}}\,\, + \,\,{x^2}\,{{\log }_{10}}\,x} \right]^8}$ is $5600$, then $x$ equals to
$5$
$8$
$10$
$100$
In the expansion of ${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$, the coefficient of ${x^4}$is
If the coefficients of ${5^{th}}$, ${6^{th}}$and ${7^{th}}$ terms in the expansion of ${(1 + x)^n}$be in $A.P.$, then $n =$
The coefficient of the term independent of $x$ in the expansion of $(1 + x + 2{x^3}){\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ is
If the coefficients of $x^7$ in $\left( ax ^2+\frac{1}{2 bx }\right)^{11}$ and $x ^{-7}$ in $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ are equal, then
The coefficient of ${x^7}$ in the expansion of ${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^8}$ is