If the angle between $\hat a$ and $\hat b$ is $60^o$, then which of the following vector $(s)$ have magnitude one
$(A)$ $\frac{\hat a + \hat b}{\sqrt 3}$ $(B)$ $\hat a + \widehat b$ $(C)$ $\hat a$ $(D)$ $\hat b$
Only $C,D$
Only $B,C,D$
Only $A,C,D$
All
A particle is situated at the origin of a coordinate system. The following forces begin to act on the particle simultaneously (Assuming particle is initially at rest)
${\vec F_1} = 5\hat i - 5\hat j + 5\hat k$ ${\vec F_2} = 2\hat i + 8\hat j + 6\hat k$
${\vec F_3} = - 6\hat i + 4\hat j - 7\hat k$ ${\vec F_4} = - \hat i - 3\hat j - 2\hat k$
Then the particle will move
Two forces are such that the sum of their magnitudes is $18 \,N$ and their resultant is perpendicular to the smaller force and magnitude of resultant is $12\, N$. Then the magnitudes of the forces are
Magnitude of vector which comes on addition of two vectors, $6\hat i + 7\hat j$ and $3\hat i + 4\hat j$ is
Which of the following forces cannot be a resultant of $5\, N$ and $7\, N$ force...........$N$
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is