The angle between vector $\vec{Q}$ and the resultant of $(2 \overrightarrow{\mathrm{Q}}+2 \overrightarrow{\mathrm{P}})$ and $(2 \overrightarrow{\mathrm{Q}}-2 \overrightarrow{\mathrm{P}})$ is:
$0^{\circ}$
$\tan ^{-1} \frac{(2 \overrightarrow{\mathrm{Q}}-2 \overrightarrow{\mathrm{P}})}{2 \overrightarrow{\mathrm{Q}}+2 \overrightarrow{\mathrm{P}}}$
$\tan ^{-1}\left(\frac{P}{Q}\right)$
$\tan ^{-1}\left(\frac{2 Q}{P}\right)$
The vectors $\vec{A}$ and $\vec{B}$ are such that
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$
The angle between the two vectors is
How many minimum number of non-zero vectors in different planes can be added to give zero resultant
Figure shows a body of mass m moving with a uniform speed $v$ along a circle of radius $r$. The change in velocity in going from $A$ to $B$ is
Mark the correct statement :-