If the foci and vertices of an ellipse be $( \pm 1,\;0)$ and $( \pm 2,\;0)$, then the minor axis of the ellipse is
$2\sqrt 5 $
$2$
$4$
$2\sqrt 3 $
The normal at a variable point $P$ on an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}= 1$ of eccentricity e meets the axes of the ellipse in $ Q$ and $R$ then the locus of the mid-point of $QR$ is a conic with an eccentricity $e' $ such that :
Planet $M$ orbits around its sun, $S$, in an elliptical orbit with the sun at one of the foci. When $M$ is closest to $S$, it is $2\,unit$ away. When $M$ is farthest from $S$, it is $18\, unit$ away, then the equation of motion of planet $M$ around its sun $S$, assuming $S$ at the centre of the coordinate plane and the other focus lie on negative $y-$ axis, is
If $3 x+4 y=12 \sqrt{2}$ is a tangent to the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{9}=1$ for some a $\in \mathrm{R},$ then the distance between the foci of the ellipse is
Extremities of the latera recta of the ellipses $\frac{{{x^2}}}{{{a^2}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,1\,$ $(a > b)$ having a given major axis $2a$ lies on
The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$ . If one of its directices is $x = - 4$ then the equation of the normal to it at $\left( {1,\frac{3}{2}} \right)$ is