- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
hard
If the length of the tangents drawn from the point $(1,2)$ to the circles ${x^2} + {y^2} + x + y - 4 = 0$ and $3{x^2} + 3{y^2} - x - y + k = 0$ be in the ratio $4 : 3$, then $k =$
A
$7/2$
B
$21/2$
C
$-21/ 4$
D
$7/4$
Solution
(c) Given $\frac{{{T_1}}}{{{T_2}}} = \frac{4}{3}$, where $T_1$ and $T_2$ are the length of tangents drawn to the given circle. $ \Rightarrow \frac{{\sqrt {1 + 4 + 1 + 2 – 4} }}{{\sqrt {{{(1)}^2} + {{(2)}^2} – \frac{1}{3} – \frac{2}{3} + \frac{k}{3}} }} = \frac{4}{3} \Rightarrow k = – \frac{{21}}{4}$.
Standard 11
Mathematics
Similar Questions
normal