Gujarati
10-1.Circle and System of Circles
hard

If the length of the tangents drawn from the point $(1,2)$ to the circles ${x^2} + {y^2} + x + y - 4 = 0$ and $3{x^2} + 3{y^2} - x - y + k = 0$ be in the ratio $4 : 3$, then $k =$

A

$7/2$

B

$21/2$

C

$-21/ 4$

D

$7/4$

Solution

(c) Given $\frac{{{T_1}}}{{{T_2}}} = \frac{4}{3}$, where $T_1$ and $T_2$ are the length of tangents drawn to the given circle. $ \Rightarrow \frac{{\sqrt {1 + 4 + 1 + 2 – 4} }}{{\sqrt {{{(1)}^2} + {{(2)}^2} – \frac{1}{3} – \frac{2}{3} + \frac{k}{3}} }} = \frac{4}{3} \Rightarrow k = – \frac{{21}}{4}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.