If the line $y\, = \,mx\, + \,7\sqrt 3 $ is normal to the hyperbola $\frac{{{x^2}}}{{24}} - \frac{{{y^2}}}{{18}} = 1,$ then a value of $m$ is 

  • [JEE MAIN 2019]
  • A

    $\frac{2}{{\sqrt 5 }}$

  • B

    $\frac{{\sqrt 5 }}{2}$

  • C

    $\frac{{\sqrt {15} }}{2}$

  • D

    $\frac{3}{{\sqrt 5 }}$

Similar Questions

The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $\mathrm{x}= \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y-\sqrt{3} \mathrm{x}+\sqrt{3}=0$ touch this hyperbola at $\left(\mathrm{x}_0, \mathrm{y}_0\right)$. If $\mathrm{m}$ is the product of the focal distances of the point $\left(\mathrm{x}_0, \mathrm{y}_0\right)$, then $4 \mathrm{e}^2+\mathrm{m}$ is equal to ...........

  • [JEE MAIN 2024]

The equation of the normal to the hyperbola $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ at the point $(8,\;3\sqrt 3 )$ is

The values of parameter $'a'$ such that the line $\left( {{{\log }_2}\left( {1 + 5a - {a^2}} \right)} \right)x - 5y - \left( {{a^2} - 5} \right) = 0$ is a normal to the curve $xy = 1$ , may lie in the interval

Let tangents drawn from point $C(0,-b)$ to hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ touches hyperbola at points $A$ and $B.$ If $\Delta ABC$ is a right angled triangle, then $\frac{a^2}{b^2}$ is equal to -

For $0<\theta<\pi / 2$, if the eccentricity of the hyperbola $\mathrm{x}^2-\mathrm{y}^2 \operatorname{cosec}^2 \theta=5$ is $\sqrt{7}$ times eccentricity of the ellipse $x^2 \operatorname{cosec}^2 \theta+y^2=5$, then the value of $\theta$ is :

  • [JEE MAIN 2024]