Let $P(6,3)$ be a point on the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$. If the normal at the point $P$ intersects the $x$-axis at $(9,0)$, then the eccentricity of the hyperbola is
$\sqrt{\frac{5}{2}}$
$\sqrt{\frac{3}{2}}$
$\sqrt{2}$
$\sqrt{3}$
Let the equation of two diameters of a circle $x ^{2}+ y ^{2}$ $-2 x +2 fy +1=0$ be $2 px - y =1$ and $2 x + py =4 p$. Then the slope $m \in(0, \infty)$ of the tangent to the hyperbola $3 x^{2}-y^{2}=3$ passing through the centre of the circle is equal to $......$
The equation of the tangent parallel to $y - x + 5 = 0$ drawn to $\frac{{{x^2}}}{3} - \frac{{{y^2}}}{2} = 1$ is
Let $0 < \theta < \frac{\pi }{2}$. If the eccentricity of the hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ is greater than $2$, then the length of its latus rectum lies in the interval
Let $S$ be the focus of the hyperbola $\frac{x^2}{3}-\frac{y^2}{5}=1$, on the positive $\mathrm{x}$-axis. Let $\mathrm{C}$ be the circle with its centre at $\mathrm{A}(\sqrt{6}, \sqrt{5})$ and passing through the point $\mathrm{S}$. if $\mathrm{O}$ is the origin and $\mathrm{SAB}$ is a diameter of $\mathrm{C}$ then the square of the area of the triangle $OSB$ is equal to ....................
Let $\lambda x-2 y=\mu$ be a tangent to the hyperbola $a^{2} x^{2}-y^{2}=b^{2}$. Then $\left(\frac{\lambda}{a}\right)^{2}-\left(\frac{\mu}{b}\right)^{2}$ is equal to