Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
hard

Let $P(6,3)$ be a point on the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$. If the normal at the point $P$ intersects the $x$-axis at $(9,0)$, then the eccentricity of the hyperbola is

A

$\sqrt{\frac{5}{2}}$

B

$\sqrt{\frac{3}{2}}$

C

$\sqrt{2}$

D

$\sqrt{3}$

(IIT-2011)

Solution

Equation of normal to the hyperbola is

$\frac{ x – x _1}{\frac{ x _1}{ a ^2}}=\frac{ y – y _1}{-\frac{ y _1}{b^2}}$

So, equation of normal to hyperbola at $(6,3)$ is

$\frac{x-6}{\frac{6}{a^2}}=\frac{y-3}{-\frac{3}{b^2}}$

Since, it intersects x -axis at $(9,0)$

$\text { So, } \frac{9-6}{\frac{6}{a^2}}=\frac{-3}{-\frac{3}{b^2}}$

$\Rightarrow a^2=2 b^2$

Eccentricity of hyperbola $=\sqrt{1+\frac{ b ^2}{ a ^2}}$

$=\sqrt{1+\frac{ b ^2}{2 b^2}}=\sqrt{\frac{3}{2}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.