Gujarati
3 and 4 .Determinants and Matrices
normal

If the matrix $AB = O$, then

A

$A = O$ or $B = O$

B

$A = O$ and $B = O$

C

It is not necessary that either $A = O$or $B = O$

D

$A \ne O,B \ne O$

Solution

(c) $AB = O\,\,\, \Rightarrow \,\,|AB|\, = \,0$

==> $|A|\,.\,|B| = 0$ ==> $|A|\, = \,0$ or $|B|\, = \,0$

When $AB = O$, neither $A$ nor $B$ may be $O.$

For example if $A = \left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]$, then $AB = \left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right]$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.