- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If the matrix $AB = O$, then
A
$A = O$ or $B = O$
B
$A = O$ and $B = O$
C
It is not necessary that either $A = O$or $B = O$
D
$A \ne O,B \ne O$
Solution
(c) $AB = O\,\,\, \Rightarrow \,\,|AB|\, = \,0$
==> $|A|\,.\,|B| = 0$ ==> $|A|\, = \,0$ or $|B|\, = \,0$
When $AB = O$, neither $A$ nor $B$ may be $O.$
For example if $A = \left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]$ and $B = \left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]$, then $AB = \left[ {\begin{array}{*{20}{c}}0&0\\0&0\end{array}} \right]$.
Standard 12
Mathematics
Similar Questions
normal
medium