If the probability of a horse $A$ winning a race is $1/4$ and the probability of a horse $B$ winning the same race is $1/5$, then the probability that either of them will win the race is

  • A

    $\frac{1}{{20}}$

  • B

    $\frac{9}{{20}}$

  • C

    $\frac{{11}}{{20}}$

  • D

    $\frac{{19}}{{20}}$

Similar Questions

In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student opted for $NCC$ or $NSS$.

If $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ and the events $A$ and $B$ are mutually exclusive, then $x = $

For the three events $A, B$ and $C, P$ (exactly one of the events $A$ or $B$ occurs) = $P$ (exactly one of the events $B$ or $C$ occurs)= $P$ (exactly one of the events $C$ or $A$ occurs)= $p$ and $P$ (all the three events occur simultaneously) $ = {p^2},$ where $0 < p < 1/2$. Then the probability of at least one of the three events $A, B$ and $C$ occurring is

  • [IIT 1996]

If $P(A)=\frac{3}{5}$ and $P(B)=\frac{1}{5},$ find $P(A \cap B)$ if $A$ and $B$ are independent events

Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find $P(A \cup B)$