- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
If the product of the perpendicular distances from any point on the hyperbola $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\,\, = \,1$ of eccentricity $e =\sqrt 3 \,$ from its asymptotes is equal to $6$, then the length of the transverse axis of the hyperbola is
A
$3$
B
$6$
C
$8$
D
$12$
Solution

$p_1p_2 $ =$\frac{{{a^2}{b^2}}}{{{a^2} + {b^2}}}\,$ = $\frac{{{a^2}.\,{a^2}\,({e^2} – 1)}}{{{a^2}\,{e^2}}}\,\,$ $= 6$
$\frac{{2{a^2}}}{3}\,\, = \,\,6\,$ $ \Rightarrow$ $ a^2 = 9 $ $\Rightarrow $ $a = 3$
hence $ 2a = 6$
Standard 11
Mathematics