Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Tangents are drawn from any point on hyperbola $4x^2 -9y^2 = 36$ to the circle $x^2 + y^2 = 9$ . If locus of midpoint of chord of contact is $\left( {\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4}} \right) = \lambda {\left( {\frac{{{x^2} + {y^2}}}{9}} \right)^2}$ , then $\lambda $ is 

A

$4$

B

$1$

C

$2$

D

$3$

Solution

$\frac{x^{2}}{9}-\frac{y^{2}}{4}=1 ; P(3 \sec \theta, 2 \tan \theta)$

$\therefore$ equation of chord of contact $AB$ wrt $P$ is $T$

$=0$

i.e $3 x \sec \theta+2 y \tan \theta=9$           …..$(2)$

Also, chord with given midpoint $(\mathrm{h}, \mathrm{k})$ is $T=S_{1}$

$\Rightarrow h x+k y-9=h^{2}+k^{2}-9$       …..$(2)$

comparing $( 1 )$ and $( 2 )$

$\frac{3 \sec \theta}{h}=\frac{2 \tan \theta}{h}=\frac{9}{h^{2}+k^{2}} ;$ as $\sec ^{2} \theta-\tan ^{2} \theta=1$

$\Rightarrow$ locus is $\left(\frac{x^{2}}{9}-\frac{y^{2}}{4}\right)=1\left(\frac{x^{2}+y^{2}}{9}\right)^{2}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.