If the resultant of all the external forces acting on a system of particles is zero, then from an inertial frame, one can surely say that
linear momentum of the system does not change in time
kinetic energy of the system does not change in time
angular momentum of the system does not change in time
potential energy of the system does not change in time
A particle of mass $1 kg$ is subjected to a force which depends on the position as $\vec{F}=-k(x \hat{i}+y \hat{j}) kgms ^{-2}$ with $k=1 kgs ^{-2}$. At time $t=0$, the particle's position $\vec{r}=\left(\frac{1}{\sqrt{2}} \hat{i}+\sqrt{2} \hat{j}\right) m$ and its velocity $\vec{v}=\left(-\sqrt{2} \hat{i}+\sqrt{2} \hat{j}+\frac{2}{\pi} \hat{k}\right) m s^{-1}$. Let $v_x$ and $v_y$ denote the $x$ and the $y$ components of the particle's velocity, respectively. Ignore gravity. When $z=0.5 m$, the value of $\left(x v_y-y v_x\right)$ is. . . . . $m^2 s^{-1}$
A particle of mass $m$ is moving along the side of a square of side '$a$', with a uniform speed $v$ in the $x-y$ plane as shown in the figure
Which of the following statement is false for the angular momentum $\vec L$ about the origin ?
Why $\vec v \times \vec p = 0$ for rotating particle ?
A solid cylinder of mass $2\ kg$ and radius $0.2\,m$ is rotating about its own axis without friction with angular velocity $3\,rad/s$. A particle of mass $0.5\ kg$ and moving with a velocity $5\ m/s$ strikes the cylinder and sticks to it as shown in figure. The angular momentum of the cylinder before collision will be ........ $J-s$
$A$ uniform disc is rolling on a horizontal surface. At a certain instant $B$ is the point of contact and $A$ is at height $2R$ from ground, where $R$ is radius of disc.